Introduction to Embedded Systems

Training & Development Department training@uruktech.com

www.uruktech.com

Outlines

- What is a Microprocessor?
- What is a Microcontroller?
- Microprocessor Vs. Microcontroller.
- What is Embedded System?
- Embedded System Characteristics and types.
- Embedded System Structure.
- Embedded System Examples.
- How To choose a Microcontroller?
- Arduino Platform.
- Arduino Features.
- Arduino Boards.
- Sensors.
- Actuators.

What is a Microprocessor?

- A Microprocessor, popularly known as "computer processor on a chip".
- a general purpose central processing unit (CPU) fabricated on a single integrated circuit (IC) and is a complete digital computer.
- It is a small but very powerful electronic brain that operates at a blistering speed and is often used to:
 - carry out instructions of a computer program.
 - perform arithmetic and logical operations.
 - storing the data, system control, input / output operations

What is a Microprocessor?

- The main task of a Microprocessor:
 - Accepts data as input from input devices.
 - Process this data according to the instructions.
 - provide the result as output through output devices.

What is a Microprocessor?

- There are three basic characteristics used to differentiate Microprocessors:
 - Instruction Set:
 - CISC Complex Instruction Set Computer, example intel x86.
 - RISC Reduced Instruction Set Computer, example ARM devices.
 - Bandwidth: maximum number of bits processed in a single instruction.
 - Clock Speed: number of instructions executed per second (MHz or GHz).

What is a Microcontroller?

- Microcontrollers are "Small computer On a Chip".
- It consists of:
 - CPU.
 - Memory.
 - Input/output ports and timers.
- They are basically used in embedded systems.
- They are classified according to:
 - Bus width.
 - Memory structure.
 - Instruction set.

What is a Microcontroller?

- Bus Width: is the size of the data bus. Example: 8bits, 16bits and 32bits.
- Memory structures:
 - Embedded Memory
 - External Memory
- Instruction Set:
 - CISC: majority of microcontrollers.
 - RISC

A/D RAM Converte Microprocessor Program Memory Oscillator - 40MHz Microcontroller

Microprocessors Vs. Microcontrollers

Microprocessor	Microcontroller
Microprocessor assimilates the function of a central processing unit (CPU) on to a single integrated circuit (IC).	Microcontroller can be considered as a small computer which has a processor and some other components in order to make it a computer.
Microprocessors are mainly used in designing general purpose systems from small to large and complex systems like super computers.	Microcontrollers are used in automatically controlled devices.
Microprocessors are basic components of personal computers.	Microcontrollers are generally used in embedded systems
Computational capacity of microprocessor is very high. Hence can perform complex tasks.	Less computational capacity when compared to microprocessors. Usually used for simpler tasks.
Generally microprocessors are not used in real time systems as they are severely dependent on several other components.	Microcontrollers are used to handle real time tasks as they are single programmed, self sufficient and task oriented devices.

Electronics

What is Embedded System?

- An Embedded System is a computer system with a dedicated function within larger mechanical or electrical system, often real-time computing constrains.
- It is Embedded as part of a complete device often including hardware and mechanical parts.
- Embedded system control many devices in common use today.

Embedded Systems Characteristics and types

• Embedded system important characteristics:

Types of Embedded Systems

- Embedded systems are classified based on their performance and functional requirements into:
 - Stand Alone Embedded Systems: it works by itself like mp3 players, digital cameras, video games consoles, etc.
 - Real-Time Embedded Systems: a system that gives its required input/output in a particular time. And it is classified into hard and soft real time systems.
 - Networked Embedded systems: embedded systems that are related to a network to access the resources.
 - Mobile Embedded Systems: used in portable embedded devices like cell phones, mobiles, etc.

Embedded System Structure

Embedded System Examples

Electronic

Embedded System Examples

- URUK Electronics

How to Select a Microcontroller

Workshop on Embedded Systems Technology

Arduino Platform

- The Arduino is a microcontroller development platform paired with an intuitive programming language that you develop using the Arduino integrated development environment (IDE).
- By equipping the Arduino with sensors, actuators, lights, speakers, add-on modules (called *shields*), and other integrated circuits, you can turn the Arduino into a programmable "brain" for just about any embedded system.

Arduino Functionality

- All Arduino boards have a few key capabilities and functions:
 - Atmel microcontroller.
 - USB programming/communication interface(s).
 - Voltage regulator and power connections.
 - Breakout I/O pins.
 - Debug, Power, and RX/TX LEDs.
 - Reset button.
 - In-circuit serial programmer (ICSP) connector(s).

Atmel Microcontroller

- At the heart of every Arduino is an Atmel microcontroller unit (MCU).
- Most Arduino boards, including the Arduino Uno, use an AVR ATMega microcontroller.
- The Arduino Uno uses an ATMega328p.
- The Due is an exception; it uses an ARM Cortex microcontroller.

Arduino Boards

UNO

- an ATMega328p as the main MCU.
- Operating voltage 5V.
- Input voltage (Recommended) 7-12V.
- 14 I/O Digital pins, 6 provide PWM.
- 6 Analogue pins.
- 2KB SRAM, 32KB Flash Memory, and 1KB EEPROM.
- Clock speed 16MHz.
- It is available in both DIP and SMD versions.

- Intel Curie as the main MCU.
- Operating voltage 3.3V.
- Input voltage (Recommended) 7-12V.
- 14 I/O Digital pins, 4 provide PWM.
- 6 Analogue pins.
- 24KB SRAM, 196KB Flash Memory.
- Clock speed 32MHz.

- Intel Curie as the main MCU.
- Operating voltage 3.3V.
- Input voltage (Recommended) 7-12V.
- 14 I/O Digital pins, 4 provide PWM.
- 6 Analogue pins.
- 24KB SRAM, 196KB Flash Memory.
- Clock speed 32MHz.

- ATmega168V or ATmega328P as the main MCU.
- Operating voltage 2.7V, 5V.
- 14 I/O Digital pins, 4 provide PWM.
- 6 Analogue pins.
- 1KB SRAM, 16KB Flash Memory and 0.512 EEPROM.
- Clock speed 8MHz.

- ATmega2560 as the main MCU.
- Operating voltage 5V.
- Input voltage (Recommended) 7-12V.
- 54 I/O Digital pins, 15 provide PWM.
- 16 An<mark>alogue p</mark>ins.

- 8KB SRAM, 256KB Flash Memory and 4KB EEPROM.
- Clock speed 16MHz.

Arduino Boards

Micro

- ATmega32U4 as the main MCU.
- Operating voltage 5V.
- Input voltage (Recommended) 7-12V.
- 20 I/O Digital pins, 7 provide PWM.
- 12 Analogue pins.
- 2.5KB SRAM, 32KB Flash Memory AND 1KB EEPROM.
- Clock speed 16MHz.

- ATmega328P as the main MCU.
- Operating voltage 3.3V/5V.
- Input voltage (Recommended) 3.35/5V-12V.
- 14 I/O Digital pins, 6 provide PWM.
- 6 Analogue pins.
- 2KB SRAM, 32KB Flash Memory and 1KB EEPROM.
- Clock speed 8/16MHz.

Sensors

Actuators

Thank you ...

